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Abstract--Measurements of wavelengths and speeds of periodic waves which occur at the interface of thin, 
horizontal, liquid films sheared by a cocurrent gas flow are compared with predictions of linear theory. 
In general, linear predictions accurately match the data near the point of neutral stability but begin to 
deviate as the gas velocity increases. The behavior away from neutral stability is explained by the 
examination of the dynamical system associated with steady solutions to a nonlinear wave equation based 
on boundary-layer approximations. Periodic waves are seen to occur in the neighborhood of the Hopf 
curve which serves as a boundary between periodic waves and a flat film. Solitary waves (which correspond 
under some circumstances to disturbance or roll waves) are observed to lie in another region of parameter 
space at gas velocities well above neutral stability. These results suggest that a complete nonlinear analysis 
of the boundary-layer (or associated wave) equations would be useful for predicting amplitudes and speeds 
for periodic waves and the region of occurrence for solitary waves. 
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i. INTRODUCTION 

A characteristic common to all annular flows is the wavy gas-liquid interface. Waves exert a 
significant influence on the flow fields of  both liquid and gas by causing fluctuations in the wall 
shear stress (and consequently on heat or mass transfer rates). They also affect the rate of  
atomization from the film and influence pressure drop because of  roughening of  the interface. Quite 
clearly, a complete understanding of  the annular flow regime will not occur until the interfacial 
wave behavior is characterized. 

Because of their obvious importance, waves on thin films have been the subject of  numerous 
studies. Examples of  studies of  waves on freely falling films include those of  Telles & Dukler (1970), 
Chu & Dukler (1974), Lin (1974), Nakaya (1975), Pumir et al. (1983), Alekseenko et al. (1985), 
Chang (1986a,b), Chen & Chang (1986) and Barrdahl (1986). Studies of  waves on vertical films 
in the presence of a gas flow have been undertaken by Webb & Hewitt (1975), Henstock & Hanrat ty 
(1976), Nencini & Andreussi (1982) and Martin & Azzopardi (1985). For  the case of  freely falling 
films, the qualitative wave behavior is relatively well understood. Chang (1986b) has shown that 
for small liquid Reynolds numbers (<  10), accurate quantitative predictions of  behavior can be 
obtained directly from Navier-Stokes equations simplified using perturbation arguments. However 
for higher liquid Reynolds numbers, the problem is much more difficult because the surface 
curvature is not small. The studies of  Brauner & Maron (1983) and Maron et al. (1985) indicate 
that if the wave is broken into several separate regions, it is possible to describe its behavior. 
Wasden & Dukler (1987) were able to successfully describe speeds of  waves on falling films using 
finite difference solutions to the Navier-Stokes equations when the shape of  the interface was 
known from measurements. 

Horizontal gas-liquid flows where the film is thin have also been studied but have not received 
the extensive attention accorded to falling films. Researches include Hanrat ty & Engen (1957), 
Hanrat ty & Hershman (1961), Cohen & Hanrat ty (1965), Craik (1966), Hanrat ty  (1983) and 
Fukano et al. (1985). All of  the theoretical analyses have been based on linear theories which have 
been shown to be capable of  predicting wave speeds and conditions of  neutral stability. Jurman 
& McCready (1989) used boundary-layer arguments to derive a weakly nonlinear wave equation 
which was shown to correctly match the equations of  Hanrat ty (1983) in the linear limit. However, 
this equation has not been analyzed as to its ability to predict behavior when nonlinear effects are 
expected to be important. 
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Several issues need to be addressed to expand the present understanding of waves which occur 
on highly-sheared horizontal films. A theoretical approach which is based on the Navier-Stokes 
equations, but is sufficiently simple to allow examination of qualitative behavior of the solutions, 
is needed. It is necessary to verify, by comparison to experiments, that the approach is correct. A 
third need is to identify the processes which are occurring in these flows which lead to wave 
behavior. Specifically, what is the origin of the various wave types and for nonperiodic waves, what 
controls the number which occur. 

In this study, waves occurring on thin liquid films, highly sheared by a gas flow, are investigated 
using experimental and theoretical techniques. For theoretical purposes, waves will be considered 
as individual, traveling forms because their wavelengths will be much longer than the film thickness; 
this precludes significant interaction between different waves. Surface tracings of waves are 
presented to display their qualitative behavior; measurements of speeds and wavelengths are used 
to evaluate the quantitative predictions of the equation derived by Jurman & McCready (1989). 
In addition, the qualitative behavior of steady solutions to this equation are examined. In the 
discussion, important outstanding questions about wave behavior are addressed. 

2. EXPERIMENTAL METHOD 

The flow system used in this study is a horizontal, rectangular flow channel with dimensions 
2.54 cm high, 0.30 m wide and 9 m long through which gas and liquid flow concurrently (figure 1). 
Waves are measured with parallel wire conductance probes using techniques described by Henstock 
(1977) and McCready (1986). The probes used in this study are located approx. 6 m from the 
channel inlet. Filtered air is used as the gas and glycerin-water solutions having viscosities in the 
range of 10-20 cP are used as the liquid. The viscosity range was chosen because all events occur 
more slowly than with water and the waves tend to be two-dimensional. As a consequence, it is 
much easier to examine the waves experimentally and also to find conditions which should agree 
almost exactly with theory. Data were taken over a wide range of flow conditions and are presented 
here in the form of surface tracings, frequency spectra obtained from Fourier analysis of the surface 
height time series and average wave speeds obtained from cross-spectra using two probes separated 
by 0.55 cm. 

Results and observations 

Typical qualitative behavior for waves is displayed by the surface tracings in figure 2 where the 
liquid film thickness, m, is plotted vs time. Three conditions of increasing Reo are shown. At the 
lowest value of Reo = 9850, the waves observed are uniform and periodic. These waves form within 
the first 30-50 cm of the channel inlet and propagate with little change of shape. It is noted that 
these waves are highly two-dimensional with individual crests spanning almost the entire channel 
width. In figure 2(a), the film thickness is approx. 3 mm and the wavelength (obtained from 
photographs) is about 2 cm. If the gas velocity is increased while the liquid flow rate (and 
consequently ReL) is held constant, the average film thickness decreases and a dramatic change 
occurs in the nature of the waves. Solitary waves appear and become dominant with essentially 
no periodic waves being present. The solitary waves form within a short distance from the 
beginning of the channel and propagate with little change of shape. Visual observations indicate 
that the width of the wave crests for these conditions is typically 8-12 cm. Surface tracings taken 
at higher Ree exhibit similar behavior. 

Also of interest are the corresponding wave amplitude-frequency spectra for these conditions 
which are shown in figure 3. As expected, the nearly sinusoidal periodic waves produce a clear peak 
that occurs at about 10 Hz. However, the shape of the solitary waves cannot be represented by 
only a few Fourier components, resulting in spectrum which is rather broad and flat. 

It can be seen in the tracings of figure 2, that the waves at a given flow condition are quite uniform 
with respect to wavelength, shape and amplitude. In addition, because typical wavelengths are 
much larger than the film thickness [the conditions of figure 2(a) are typical for a range of films 
at low ReL], only very weak interactions between different waves will occur. Therefore, it should 
be possible to describe the shape, amplitude and celerity of these waves with a nonlinear evolution 
equation using an analysis which focuses on the behavior of individual waves. 
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3. THEORY 

For Re L <% 20 (based on the film thickness), the waves which appear as the result of a shearing 
turbulent gas flow will generally have wavelengths which are much longer than the film thickness. 
Consequently, theoretical analyses can be based on boundary-layer arguments. Starting with the 
boundary-layer equations, Jurman & McCready (1989) showed that for two-dimensional waves on 
thin liquid films sheared by gas flows, the surface height should be described by the equation 
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Figure 3. Frequency spectra at Re L = 5 as a function of increasing gas velocity. 
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In these equations, co is the approximate kinetic wave speed, cL2 are approximate dynamic wave 
speeds, h is the surface height deviation from the average film thickness, ct is the wavenumber made 
dimensionless with the average film height,t x is the flow direction, 7 is an inverse Froude number, 
We is a Weber number and ReL is the liquid Reynolds number. To derive an equation in terms 
of h, the boundary-layer equations are integrated over the film thickness. As a consequence, it is 
necessary to know the velocity profile. In their derivation, Jurman & McCready (1989) assumed 
that the profiles would be self-similar and described by F, the integral over the film thickness of 
the velocity squared. Another important assumption in this derivation is that the effect of the gas 
flow can be described through boundary conditions on pressure and shear stress which are written 
as components in-phase with the wave height (#,r and f,,) and with the wave slope (/5,~ and f,i), as 
has been done previously by Cohen & Hanratty (1965) and Craik (1966). Because this equation 
includes nonlinearities up to second order, it can be expected to provide information about small 
(but finite) amplitude waves. In the present case, where the liquid viscosity is > 10 cP, this should 
include the entire periodic wave region. Linear analyses, such as Orr-Sommerfeld equations, can 
provide no information (e.g. amplitude) about finite amplitude waves. 

(a) Linear analysis 
Jurman & McCready (1989) examined the behavior of the linear stability predictions of [1]. They 

found that [1] gives predictions identical to the boundary-layer equations from which it is derived 
and in its high wavenumber limit, matches the predictions of an Orr-Sommerfeld equation (which 

tVariables, with the exception of  x, are made dimensionless using the average film height, h, as a length scale and h/~ (the 
average film velocity) as a time scale. 
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is expected to be valid for higher wavenumber waves). In addition, if the variables that describe 
the behavior of the gas phase are obtained from the relations for turbulent flow over a solid wavy 
surface given by Abrams (1984) and Abrams & Hanratty (1985), then the wavelength of the 
maximum in the growth rate is shown to agree well for a Reo not far above the neutral stability 
point. It if of interest to compare the predictions of [1] with data for wavelength and speeds over 
a wide range of conditions to test its applicability. If [1] is linearized about the flat film in terms 
of a small amplitude, periodic traveling disturbance the result is 

c 2+ i 3 2F c +  r +  -- Psr -- )' -- We 
~x Re L ~-~ 

----~eL( ReL'Csr ~ ReL dfis ~ ReL ~ "~ 
- - i  2 +  ~ 3 d x + - - - - ~ p s i ) = O ,  [4] 

where c is the complex wave velocity. Examination of [4] reveals that no maximum exists for 
predicted growth rates in the high wavenumber limit and that for many conditions, all waves with 
wavenumbers greater than a certain value are predicted to be unstable. This behavior is unrealistic 
physically and results because the long-wavelength assumptions break down. To describe the linear 
behavior of waves with higher wavenumbers (shorter wavelengths), the Orr-Sommerfeld analysis 
given by Hanratty (1983), which is also about the flat film state, will be used. The secular equation 
for the complex velocity in this case is 

where 

0~ (us - c)2 co th (~)  - dY s(us - c) 

= G + coth(a~) o~'u,-- -7- - (~z~) 1/2 - 
s VL,] 

1/2 
{~(us - c)2[l - coth2(~)]} 

- , 1 (d )l ' [5] 

Predictions of [4] and [5] for wave speeds at several sets of conditions are shown in figure 4. 
In figure 5, growth rates for corresponding conditions are shown. Because long-wavelength 
approximations are used to derive [1], its linear predictions are expected to be valid up to about 

- 1 (where m/2 20.15). As noted by Hanratty (1983), the Orr-Sommerfeld analysis will not be 
valid for small ~ because the term ~(TiCr/VL) will not be sufficiently large. As a result of this, the 
growth rates predicted by the Orr-Sommerfeld equation are quadratic in ~ and do not display the 
more complex behavior (i.e. inflexion points) which is contained in the predictions of [4]. It is noted 
that growth rates obtained from [5] do exhibit maxima, as expected on physical grounds. 

It is desirable to be able to predict the dominant wavelength as it is the most fundamental wave 
property. Linear analyses suggest that the mode which is fastest growing will appear. However, 
once waves have evolved into a stable form, other behavior might occur. Figure 6 shows a 
comparison of both predicted and measured wavenumbers for three sets of data where periodic 
waves are observed at ReL = 4, 8 and 12 over a range of ReG. Also shown are values of the 
wavenumber which correspond to Hopf  bifurcations. The equation which defines the Hopf  
wavenumber will be derived below. The Hopf  wavenumber is of interest because it corresponds 
to the longest wavelength mode which is linearly unstable. It is seen that for Ret = 4 and 8 the 
growth rate maximum from [5] corresponds closely to the measured waves for low ReG but begins 
to deviate at higher ReG. For higher ReG, the stable periodic waves have wavelengths which are 
somewhat longer than the predictions of linear stability theory suggest. Apparently, as the 
amplitude of waves increase, a longer wavelength provides a more stable shape. For ReL = 12, the 

= - -  - -  + g .  [61 
PL flL 
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data fall consistently below the linear prediction. It is interesting to note that for all of the data 
presented here, the wavelengths of the dominant waves have values bounded by the fastest growing 
wave (minimum wavelength) and the Hopf bifurcation (maximum wavelength). 
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In figure 7, a comparison is shown of  measured values of the average wave speed with the 
predictions of [4] or [5] depending upon the value of ~t. For ReL = 4 and 8, the agreement is excellent 
indicating that, apparently, the slope of the waves is not large enough to cause large deviations 
in the speed from linear predictions. For ReL = 12 the measured wave speeds are consistently above 
the predictions with the exception of the first data point. It is not clear if this is due to nonlinear 
effects or a consistent error in the calculation. A small inaccuracy in the measured average film 
heights could cause calculation errors of the magnitude of the deviations which occur in this figure. 

The data for periodic waves support the linear predictions of [4] and [5] as well as the use of 
the Abrams data and correlations for predicting the effect of the turbulent gas flow on the liquid. 
However, it is clear that steady waves cannot be explained by purely linear analyses. Figure 6 
indicates that wavelengths for periodic waves are not accurately predicted by linear theory. In 
addition, experiments shown in figure 2 demonstrate that as the gas velocity is increased, wave 
behavior changes rather dramatically and steady solitary waves exist for higher gas velocities (these 
are expected to be prevalent for annular flow conditions). It is therefore desirable to develop a 
theoretical formulation which is capable of predicting the complete qualitative behavior which 
occurs. Solitary waves are highly nonlinear and even their initial formation cannot be described 
by linear analyses as they do not result directly from small-amplitude disturbances on the film. It 
is of interest to examine [1] with nonlinear terms included to see if it is capable of predicting, at 
least qualitatively, the behavior which leads to the appearance of solitary waves. 

(b) Analysis of steady solutions to the wave equation 

As the data indicate that both periodic and solitary waves appear as steady traveling forms, it 
is convenient to look at steady solutions to [1]. If this is done, techniques of nonlinear analysis 
which have been described by Guckenheimer & Holmes (1983) and Carr (1981), and used for the 
study of waves by Hwang & Chang (1987), can be applied to provide important information about 
the behavior of solutions to [1] in specific regions of parameter space without requiring complete 
numerical solutions. The development given here will be limited to initial formulation of the 
problem and identification of some aspects of the qualitative behavior. 
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Fol lowing Hwang & Chang (1987), [1] can be transformed into a moving  coordinate system by 
using the variable transformation, ~ = x - Gt  where Cr is an unspecified wave speed. When this is 
done,  the time derivatives t~/c~t become - G O / O x ,  leading to 

(C 2 -- C,(C l -t- C2) -t- clc2)h¢~ + Ao(co - c~)h¢ + A2h¢¢~ + A 3 h ~  

+ B~hh¢ + (B z + B 4 c2)(hh¢)¢ + B3(hh¢¢)c = 0, [7] 

where 
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Equation [7] is exactly integrable. In order for a flat film to be a solution, the integration constant 
must be zero. When [7] is integrated and the resulting equation is transformed into a system of 
first-order equations the result is 

[0 ° 0 / 
u ' =  0 1 u2 + 0 , [8] 

- D o  --Di - D 2  u3 -E tu~  -- E2utu 2 - E3ulu 3 

where the prime denotes differentiation with respect to ~, the vector u represents h, h' and h" 
[u = (h, h', h")T]. The coefficients are given as 

m 0 
Do = ~ (Co - c,), 

D I ~-- 
(C 2 - -  Cr(C I "]- C2) + CIC 2 

A3 

A2 
D2 = A3' 

BI 

El = 2As' 

and 

(B2 + B4c 2) 
E2 = 

A3 

B3 
E3 = A3" 

As is common for wave equations, system [8] possesses two fixed points which are always 
solutions. (Fixed points are stationary solutions which do not change or oscillate in time.) One is 
the flat film solution and the other is a shock solution. These are given by 

u°= and u l =  [91 

The amplitude of  shock (given in u 1) is dependent upon its speed which appears in Do. The region 
of  parameter space on which Do = 0 is where the two fixed points coalesce and is called a simple 
bifurcation. 

To determine the generic qualitative behavior predicted by [8], the Jacobian matrix may be 
computed around the two fixed points. Defining 

and 

then 
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with 
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Examination of the characteristic equation for [11] indicates that if Do and Di are simultaneously 
equal to zero, then two of the eigenvalues will be zero leading to a so-called "double zero" 
singularity. Singularities are of interest because they often serve as organizing centers in phase 
space. The analysis of Carr (1981) indicates that both a simple bifurcation and Hopf bifurcations 
can emanate from the present singularity. As mentioned above, a simple bifurcation will exist for 
conditions when Do = 0, which results in one of the eigenvalues of [11] being zero. Hopf 
bifurcations will occur along a curve, where Dl = D0/D2. A Hopf bifurcation occurs in situations 
where a pair of purely imaginary eigenvalues, suggesting the existence of periodic oscillating 
solutions (limit cycles), occur for the Jacobian. For the present system, the Hopf curve is the locus 
of points at which the wave growth rate obtained from linear stability is exactly zero; waves with 
wavelengths shorter than the one at the Hopf point are predicted to be linearly unstable. Similar 
behavior will occur around the second fixed point, which shares the identical double zero point. 

A general analysis of a double zero point by Carr (1981) indicates limit cycles (which correspond 
to periodic waves) can be expected in the vicinity of the Hopf and that homoclinic orbits (which 
correspond to solitary waves) are expected as well. In addition, the bifurcation curves, either Hopf 
or simple, are expected to serve as boundaries of qualitative wave behavior--separating, for 
example, regions where no steady solutions exist from periodic waves. In figure 8, the simple and 
Hopf bifurcation curves are plotted for ReL = 4, 8 and 12 along with the wave speed of the 
dominant periodic waves. Several interesting features should be noted. The double zero is a 
function of ReL and will occur at the point at which the speeds for Hopf curve and the simple curve 
become equal. It can be seen that periodic waves occur in the vicinity of Hopf curve and in all 
cases (within experimental error) have speeds which lie above the Hopf. For the present system, 
the Hopf curve is apparently acting as a boundary between periodic waves and a flat film; steady 
waves cannot exist with wave speeds less than the Hopf curve. For comparison, the wave speeds 
of the fastest growing modes using [5] are also shown. For the two lower ReL values, approximate 
upper bounds on the wave speeds are given by the predictions of the peak speeds. However, the 
Orr-Sommerfeld peak growth rate is not expected to serve as a boundary between wave types and 
the data for ReL = 12 indicate that it does not serve as any generic boundary for the present 
problem. 

In figure 9, wave speed data including both periodic and solitary waves are shown. It is interesting 
to note that the speed of the dominant periodic wave decreases with increasing Re~. While this 
behavior may be counterintuitive, it is easily explained. As Re~ increases, steady waves have larger 
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Figure 8. c - Re G plots of wave data showing Hopf  and simple bifurcation curves. 

amplitudes (a result of the greater degree of interfacial stress) and tend to have longer wavelengths 
as well (probably in an attempt to minimize their interfacial curvature). Because the speed decreases 
as the wavelength increases, the observed wave speed decreases with increasing gas velocity. 
Solitary waves are seen to travel much faster than periodic waves and to exist in a region of c - ReG 
parameter space which opens in a direction away from periodic waves. Results for solitary waves 
on vertical falling films (Chang 1987; Nakoryakov et al. 1976), indicate that as the amplitude of 
solitary waves increases, the speed will as well. This is expected for the present situation however, 
we have not made these measurements. 

4. DISCUSSION 

The data presented above suggest that the equation developed by Jurman & McCready (1989), 
with parameters obtained from Abrams (1984) and Abrams & Hanratty (1985), should accurately 
describe the behavior which occurs on thin, viscous films which are sheared by a turbulent gas flow. 
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Figure 9. Experimental wave speeds for periodic and solitary waves. 
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The obvious limitations are its inability to describe regions where the curvature is great or cases 
where the dominant waves do not have wavelengths significantly longer than the film thickness. 
The analysis and data presented above demonstrate methods for getting bounds on speeds and 
wavelengths of periodic waves. Periodic waves are observed in all cases to travel close to but faster 
than the neutrally stable modes of the Hopf  curve. In addition, the Hopf  curve serves as a lower 
bound on the wavenumber of periodic waves. It is expected that numerical solutions of [8] could 
be done to predict the amplitude of stable periodic waves. 

However, several important issues remain unresolved. As mentioned in the introduction, it would 
be of interest to be able to predict a priori  the type of waves (i.e. solitary or periodic) which occur 
for a given set of flow conditions. This could be determined by a normal form analysis coupled 
with a numerical study of the solutions to [8] similar to that done by Hwang & Chang (1987). While 
fully-developed solitary waves may have curvatures which exceed the degree of nonlinearity 
contained in [8], it is quite likely that near the point of transition, [8] will accurately describe their 
behavior. 

A second unresolved issue involves the selection process which governs the wavelength and 
amplitude of the observed waves. The data indicate that the Hopf curve will serve as a boundary 
on the periodic waves but the present analysis cannot tell how close the waves will lie. One way 
of resolving this issue would be to numerically integrate [8] and then test the stability of the 
solutions by reintroduction of the time derivatives. Presumably, the most stable form will be the 
one which corresponds to the waves observed experimentally. Integration of [8] can also be done 
for the region where solitary waves occur. It is expected that this effort would be less fruitful as 
the observed waves may have curvatures too great for [8] to describe. 

Solitary waves exist at Rec ~> 11,000. Their occurrence appears to be a function of ReL as well 
(a point which could be confirmed by a nonlinear analysis). However, such an analysis would not 
provide insight into an equally important question with regards to heat and mass transfer, 
atomization and pressure drop. How many of the waves pass a given location during a given period 
of time? To resolve this issue (which does not arise, for obvious reasons, with periodic waves), it 
is necessary to examine the mechanism by which solitary waves are formed. At high Re~, where 

F L o w  " 

F i g u r e  10. P h o t o g r a p h  o f  f low a t  Re  L = 9 a n d  Re G = 13,900. The  f low is f r o m  left to  r ight .  
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solitary waves occur, the film is linearly unstable to infinitesimal disturbances, suggesting that 
periodic waves should also form. Figure l0 shows a photograph of the waves for Re6 = = 13,900 
and Re L = 9. The view is from the bottom of the channel and the flow is from left to right. The 
dark bands which span large parts of the channel are solitary waves; periodic waves, which for 
these conditions have shorter spanwise widths, are also seen (any droplets which appear are 
attached to the top wall). Wave tracings and visual observations indicate that periodic waves are 
unstable and quickly evolve to another form. In an attempt to determine the exact events which 
transpire in this regime, we have observed this process with a videocamera and recorder. From 
figure l0 and the slow motion projection of the videotape, it can be seen that after the passage 
of a solitary wave, which leaves behind a smooth film, periodic waves form rapidly. These grow 
until one of two events occur. First, it is possible for one of the new periodic waves to reach an 
amplitude large enough to become a solitary wave. If this happens, the wave suddenly increases 
in speed and engulfs any periodic waves in front of it. A second and more likely scenario is the 
engulfment of all of the newly formed periodic waves by a solitary wave from upstream. In either 
case, the process begins again. At steady state, it is assumed that the number of solitary waves does 
not change with time or distance. As some new waves are being created, others must disappear. 
This process occurs either by faster waves catching slower waves and engulfing them or occasionally 
by waves appearing to die spontaneously (an event which apparently occurs when the amplitude 
gets too large). 

It is of interest to comment upon the relation between the solitary waves observed in the present 
study and "roll waves" as observed by Hanratty & Hershman (1961). Hanratty & Hershman (1961) 
noted that for water as a fluid, a transition from a pebbly surface to roll waves occurs if the Re L 
(defined as 4 times the present ReL) exceeds about 100 when ReG ~> 15,000. Andreussi et al. (1985) 
and Miya et al. (1971) extended this study to include fluids more viscous than water. Figure 3 of 
Andreussi et al. (1985) indicates that the Re L at the transition to roll waves decreases smoothly 
with increasing viscosity. Our present data, which fall on the upper viscosity end of this plot indicate 
that so-called "roll waves" are the same as solitary waves. (Our observations suggest for fluids as 
viscous as 15 cP, the waves are probably not breaking.) Bruno & McCready (1988) speculate that 
for all fluids in the low ReL region (below ReL = 25), "roll waves" are actually solitary waves; for 
low viscosity fluids these may begin to break. If  this is the case, then a nonlinear analysis of [1] 
which reveals the entire qualitative structure around the double zero point may explain the 
transition to roll waves on thin films which has eluded all linear analyses done to date. 
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